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Stochastic Bloch equations which model the fluorescence of two-level molecules and atoms, NMR experi-
ments, and Josephson junctions are investigated to illustrate the profound effect of multiplicative noise on the
critical frequency of a dynamical system. Using exact solutions and the cumulant expansion we find two main
effects: �i� even very weak noise may double or triple the number of critical frequencies, which is related to an
instability of the system, and �ii� strong multiplicative noise may induce a nontrivial zero critical frequency
thus wiping out the overdamped phase.
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Many dissipative deterministic dynamical systems exhibit
two phases of motion: an underdamped oscillatory behavior
or an overdamped nonoscillatory motion. The transition be-
tween these common behaviors defines the critical frequency
of the system, e.g., the critical frequency of the damped har-
monic oscillator. Multiplicative noise is known to influence
deterministic systems, in profound and surprising ways
�1–11�. Here we show how a stochastic perturbation induces
a zero critical frequency for a particular nontrivial choice of
noise strength, thus completely wiping out the overdamped
phase. This might be counterintuitive at first glance since we
expect noise to work against oscillations; however as we
soon demonstrate, in some cases the opposite situation is
found. The second interesting result we obtain is that even
weak multiplicative noise may induce a doubling or a tri-
pling of the number of critical frequencies of a system �in a
way defined later� a result which is related to an instability of
the noiseless dynamical system. Our results show how mul-
tiplicative noise may influence the critical frequency of a
system in profound ways.

We investigate the dynamics of the stochastic Bloch equa-
tion. The Bloch equation finds its applications, in many fields
of physics ranging from nuclear magnetic resonance �NMR�
�12,13� to single molecule spectroscopy �14,15� and Joseph-
son’s junctions �16�. We use the example of the optical Bloch
equation, however, with minor modifications we may con-
sider other systems, e.g., magnetic systems. In particular we
consider a two-level electronic transition of an atom or a
molecule interacting with a continuous wave laser and a sto-
chastic bath. The optical Bloch equation for Z� �t�
= �u ,v ,w ,y�, where �u ,v ,w� describes the usual Bloch vec-
tor, is

�d/dt�Z� �t� = M�t�Z� �t� ,

M�t� =�
−

�

2
�L�t� 0 0

− �L�t� −
�

2
− � 0

0 � − � − �

0 0 0 0

� . �1�

The initial condition is Z� �0�= �0,0 ,−1 /2,1 /2� describing a
system in the ground state and y=1 /2 for all times. Here � is

the radiate emission rate and � is the Rabi frequency de-
scribing the interaction of the transition dipole of the system
with the laser field �within rotating wave approximation�.
The stochastic detuning �L�t�=�L− ��0+��t�� describes the
interaction of the system with the bath in the spirit of the
Kubo-Anderson line-shape theory �14,17,18�, namely, �L�t�
is a stochastic process describing spectral diffusion. �L is the
laser frequency and �0 is the absorption frequency of the
two-level system. Spectral diffusion is found in many mo-
lecular, atomic, and magnetic systems and is well investi-
gated �14,19�. The noise is called multiplicative since in Eq.
�1� the spectral diffusion process multiplies the vector Z� .
Beyond spectral diffusion the equations describe a two-level
system in the process of resonance fluorescence, where the
laser frequency exhibits fluctuations, namely, the detuning is
a random function of time.

For the noiseless case, ��t�=0, with zero laser detuning,
�L=�0, we have a simple damped harmonic oscillator for w
�20�

ẅ + �3�

2
�ẇ + ��2 +

�2

2
�w + ��2

4
� = 0. �2�

When � is larger than the critical frequency �c=� /4 the
system exhibits underdamped Rabi oscillations, while when
���c it decays to the steady state monotonically. The criti-
cal frequency provides the quickest approach of the ampli-
tude of the damped harmonic oscillator to zero.

Now we consider the system in the presence of the spec-
tral noise and investigate the average behavior 	w
. What
will happen to the critical frequency of the system and can
we choose parameters of the noise in such a way that the
critical frequency of the noisy system is zero?

The formal solution of the problem is given in terms of
the time-ordered exponential

	Z� �t�
 =�T̂�exp�
0

t

M���d����Z� �0� . �3�

In practice it is generally difficult to find explicit solutions

due to the combination of the time-ordering operator T̂ and
the average over the multiplicative stochastic process de-
noted with 	¯ 
 in Eq. �3�. Here we find an exact solution for
a dichotomic two state Kubo-Anderson process �18�. With
this solution we will explore whether the motion is over-
damped or underdamped. We later show that our findings are
general beyond the exactly solvable two-state process. In
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particular we consider ��t�=�h�t�, where h�t�=+1 or h�t�
=−1 describes the stochastic two state process with a rate R
for transitions between +1 and −1. Such a model is appli-
cable in single molecule spectroscopy in glasses �15,21,22�
and was used extensively for the line-shape theory of Kubo
and Anderson.

We use Burshtein’s method �23� of marginal averages to
solve the Kubo-Anderson process with zero laser detuning
�L=�0. We define the marginal average vector
�	Z� �t�
+ , 	Z� �t�
−� which is the average of Z� �t� given that at
time t the stochastic process had the value 	1 correspond-
ingly. The equation of motion for the marginal average vec-
tor is

�

�t
�	Z� 
+

	Z� 
−

� = �A0
+ − RI RI

RI A0
− − RI

��	Z� 
+

	Z� 
−

� , �4�

A0
	 =�

−
�

2
	� 0 0


� −
�

2
− � 0

0 � − � − �

0 0 0 0

� , �5�

where I is the identity matrix. The operators A0
+ and A0

− are
Bloch matrices corresponding to the state of the spectral dif-
fusion �L=+� or �L=−�, respectively. To solve the problem
we must diagonalize the 8�8 matrix in Eq. �4�, then com-
plex eigenvalues yield underdamped oscillatory modes while
real eigenvalues correspond to overdamped modes. The ei-
genvalues ��� are found using the characteristic polynomial
of Eq. �4�

��� + 2R�P1���P2��� = 0, �6�

where two cubic polynomials are defined as

P1��� = �8�2 + 4�� + ���� + 2���R + 2�� + 2���2 + �� + ��

���� + 2��2 + 4�2� ,

P2��� = 8�� + 2��R2 + 2�4�2 + �� + 2���3� + 4���R

+ 2�� + 2���2 + �� + ����� + 2��2 + 4�2� . �7�

We have thus reduced the problem to finding the roots of two
third-order polynomials P1���=0 and P2���=0.

A physical observable is the intensity of emitted light
	I�t�
 which is equal to � times the population in the excited
state

	I�t�
 � ��	w
+ + 	w
− +
1

2
� � ��	w
 +

1

2
� . �8�

One can show that only the roots of P1���=0, denoted as
��1 ,�2 ,�3�, enter the solution of 	I�t�
 �24�

	I�t�


= Iss

+ �
n=1

3
et�n���n + ����2�n + ���2�n + 4R + �� + 4R�SD�
4R��SD + �4R + ����2 + 2�2� − 8�n

2��n + R + ��
,

�9�

where we have defined �SD��2 /R. The eigenvalue �=0 �see
Eq. �6�� yields the steady-state solution

Iss =
��4R + ���2

�4R + ����2 + 2�2� + 4R��SD
. �10�

This expression when �→0 is the well-known Kubo-
Anderson line shape at zero laser detuning.

We now focus our attention on the eigenvalues ��i� to
determine whether the solution is overdamped or under-
damped. The motion is called overdamped if all eigenvalues
��i� are real otherwise it is underdamped. The condition for
overdamped behavior is that the discriminant D of P1��� be
less than zero, explicitly, we have

D = − 16 384��� − �SD

4
�2

− �2�R4 + 512��3 − 8�2�2�

+ 5�SD� + �SD��2 + 2�SD��SD − 2����R3 + 64�128�4

+ 8��2 + 19�SD� + 6�SD
2 ��2 − �2��2 + 8��

− �SD��SD��R2 + 64��SD�4 + 2�2�� − 10�SD��2

+ 16�4�3�SD − 2���R − 1024�4���

4
�2

− �2�
� 0. �11�

Recall that for the noiseless case we have a single critical
frequency �c=� /4. As shown in Fig. 1 in the presence of
multiplicative noise the phase diagram of the motion is very
rich:

�i� In the slow modulation �R strong coupling � /�
1 regime, the solutions are always oscillatory and the criti-
cal frequency is 0 �indicated by 0 in Fig. 1�a��.

�ii� When ��R we obtain overdamped motion when
�C1

����C2
so we have two critical frequencies �indicated

by 2 in Fig. 1�a��.
�iii� In the fast modulation R�� strong coupling � /�

�1 limit, we find a single critical frequency similar to the
noiseless case, except for a surprising line on which �C=0
�denoted with 0 in Fig. 1�a��.

�iv� In the weak noise limit ���, the solution yields ei-
ther two or three critical frequencies �see Fig. 1�b��. Thus
weak noise modifies the solution dramatically by doubling or
tripling the number of critical frequencies of the system.

To understand better the phase diagram Fig. 1 we present
in Fig. 2 the behavior of the solution of the optical Bloch
equation in the absence of the multiplicative noise, i.e., �
=0. The figure is a phase diagram in the Rabi frequency � /�
and detuning ��L−�� /� plane showing the regions of over-
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damped and underdamped behavior. Figure 2 illustrates that
the noiseless system is unstable in the sense that for any
small detuning and low enough Rabi frequency we get an
oscillatory behavior while for zero detuning the solution is
overdamped. This instability of the noiseless solution ex-
plains why even adding a weak perturbation ��� strongly
affects the system. Namely, for weak noise �Fig, 1�b�� we
find either two or three critical frequencies instead of one for
the noiseless case.

As mentioned before for slow modulation ��R and
strong coupling �� the motion is always underdamped. To
understand this behavior we again refer to the noiseless case
presented in Fig. 2, where we observe that large detuning
means an oscillatory solution. Namely, oscillations for the
noise free Bloch equation are induced by two mechanisms,
the Rabi frequency and the detuning. Hence it is not surpris-
ing that strong and slow noise in Fig. 1�a� �i.e., ��R ,�� may
induce oscillations and the wipe out of the overdamped mo-
tion.

Far less trivial is the wipe out of overdamped motion in
the fast modulation limit, i.e., the line of zero critical fre-
quency in Fig. 1�a�. To investigate this behavior we consider

the limit R→�. Then using Eq. �11� we find the critical
frequency

lim
�,R→�

�C = �� − �SD

4
� , �12�

where the limit is taken with �SD remaining finite. We see
that �c=0 when �SD=�, namely, when � /�=�R /�. This
line is shown in Fig. 1 as a dashed line.

Expanding the exact solution in �SD, one can show that
for R�� /8 any amount of noise will lead to a decrease in
�c according to

�C =
�

4
−

2�SD

8 − �/R
+ O��SD

2 � , �13�

where the leading � /4 term describes the noiseless case. The
decrease in �c is explained by the fact that the noise removes
the system from zero detuning and hence solutions tend to be
more oscillatory �i.e., the critical frequency is reduced�. The
surprising result is that by increasing the noise level we reach
a limit where the critical frequency is zero. Such a behavior
in the fast modulation limit could not be anticipated without
our mathematical analysis. The behavior of �c is illustrated
in Fig. 3, which shows the decrease in the critical frequency
until it reaches the value �c=0.

It is natural to ask if the behavior we found is general or
limited to the example of a two state process. For this aim we
have used the cumulant expansion �26� to investigate the
critical frequency �c of the system. We consider a stationary
process h�t� whose correlation function is 	h�t�h�t+��

=exp�−R��. The cumulant expansion works well when the
Kubo number � /R is small. Within this approximation �26�

�	Z� 

�t

= �A0 + �2K�	Z� 
 , �14�

where A0=A0
	 ��=0 and

�0.10 �0.05 0.00 0.05 0.10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

�ΩL�Ω0� � �

�
�
�

FIG. 2. �Color online� Phase diagram of the optical Bloch equa-
tion in the absence of the multiplicative noise. The darker area is the
overdamped phase. For zero detuning �L−�0=0 the critical fre-
quency is �C=� /4. Notice the cusp at zero detuning which makes
the solutions unstable to multiplicative noise �25�.
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FIG. 1. �Color online� The phase diagram for the critical fre-
quencies of the optical Bloch equation with multiplicative two state
noise. The 0, 1, 2, and 3 indicate the number of critical frequencies
as defined in the text. In �a� we see a line of zero critical frequency
in the fast modulation limit ��R, which is well approximated by
the cumulant expansion �the dashed black line � /�=�R /��. In the
absence of spectral diffusion �=0 we have a single critical point,
thus as shown in �b� the addition of weak noise � /��1 may
strongly influence the critical frequency in the sense that we find
there a phase with two or three critical frequencies.
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K = 
0

�

e−R�A1eA0�A1e−A0�d� , �15�

with A1= � � 0
0 0 � and �= � 0 1

−1 0 �. Solving the integrals leads to
cumbersome equations for �c. However in the limit R→�

and �→� in such a way that �SD=�2 /R remains constant we
find that Eq. �12� is valid and therefore the equation is not
limited to the two state Kubo-Andersen model. This means
that for a large class of stochastic processes, multiplicative
noise induces zero critical frequency in the fast modulation
limit and the curve � /�=�R /�, on which �c=0 shown in
Fig. 1�a�, is a general behavior.

To further validate the generality of our results we have
solved semianalytically and with the help of Mathematica:
�i� two state model with two nonidentical rates describing the
transitions between up and down states and �ii� models with
three states. These models show behaviors similar to our
findings.

The two main effects found in this Rapid Communication:
�a� noise inducing zero critical frequency and �b� the dou-
bling or the tripling of the number of critical frequencies,
even for weak noise, are found in linear multiplicative sys-
tems. The same effects cannot be found for linear systems
driven by additive noise with zero mean since the averaged
equations have the same critical frequency as the noiseless
case. It would be interesting to investigate similar effects in
nonlinear systems with additive or multiplicative noise.
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FIG. 3. �Color online� The critical frequency �c as a function of
�SD which is the measure of noise strength. For small noise levels,
i.e., �SD /��1, the critical frequency �c decreases as anticipated in
Eq. �13�. The figure illustrates the existence of �c=0 for a particu-
lar noise value. We show the critical frequency obtained from the
exact solution �dot-dashed red line� and the cumulant approxima-
tion �dashed blue line� for R=2.5�. The solid line is the critical
frequency �c at R→� Eq. �12�.
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